extension | φ:Q→Aut N | d | ρ | Label | ID |
C23.1(C2×Q8) = C24.167C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 32 | | C2^3.1(C2xQ8) | 128,531 |
C23.2(C2×Q8) = (C2×C8).103D4 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 32 | 4 | C2^3.2(C2xQ8) | 128,545 |
C23.3(C2×Q8) = M4(2).40D4 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 32 | 4 | C2^3.3(C2xQ8) | 128,590 |
C23.4(C2×Q8) = C24.22D4 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 32 | | C2^3.4(C2xQ8) | 128,599 |
C23.5(C2×Q8) = M4(2).27D4 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 32 | 4 | C2^3.5(C2xQ8) | 128,685 |
C23.6(C2×Q8) = C24.176C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 32 | | C2^3.6(C2xQ8) | 128,728 |
C23.7(C2×Q8) = C24.182C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 32 | | C2^3.7(C2xQ8) | 128,794 |
C23.8(C2×Q8) = C22⋊C4.Q8 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 32 | 4 | C2^3.8(C2xQ8) | 128,835 |
C23.9(C2×Q8) = C24.252C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.9(C2xQ8) | 128,1149 |
C23.10(C2×Q8) = C23.323C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.10(C2xQ8) | 128,1155 |
C23.11(C2×Q8) = C23.329C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.11(C2xQ8) | 128,1161 |
C23.12(C2×Q8) = C23.350C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.12(C2xQ8) | 128,1182 |
C23.13(C2×Q8) = C23.352C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.13(C2xQ8) | 128,1184 |
C23.14(C2×Q8) = C23.354C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.14(C2xQ8) | 128,1186 |
C23.15(C2×Q8) = C24.285C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.15(C2xQ8) | 128,1197 |
C23.16(C2×Q8) = C24.300C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.16(C2xQ8) | 128,1219 |
C23.17(C2×Q8) = C23.392C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.17(C2xQ8) | 128,1224 |
C23.18(C2×Q8) = C23.397C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.18(C2xQ8) | 128,1229 |
C23.19(C2×Q8) = C23.422C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.19(C2xQ8) | 128,1254 |
C23.20(C2×Q8) = C42.166D4 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.20(C2xQ8) | 128,1270 |
C23.21(C2×Q8) = C42.167D4 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.21(C2xQ8) | 128,1274 |
C23.22(C2×Q8) = C23.456C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.22(C2xQ8) | 128,1288 |
C23.23(C2×Q8) = C42.173D4 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.23(C2xQ8) | 128,1295 |
C23.24(C2×Q8) = C24.583C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.24(C2xQ8) | 128,1296 |
C23.25(C2×Q8) = C42.175D4 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.25(C2xQ8) | 128,1298 |
C23.26(C2×Q8) = C24.338C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.26(C2xQ8) | 128,1306 |
C23.27(C2×Q8) = C23.479C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.27(C2xQ8) | 128,1311 |
C23.28(C2×Q8) = C42.178D4 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.28(C2xQ8) | 128,1312 |
C23.29(C2×Q8) = C24.345C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.29(C2xQ8) | 128,1319 |
C23.30(C2×Q8) = C24.346C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.30(C2xQ8) | 128,1321 |
C23.31(C2×Q8) = C24.385C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.31(C2xQ8) | 128,1409 |
C23.32(C2×Q8) = C23.583C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.32(C2xQ8) | 128,1415 |
C23.33(C2×Q8) = C23.592C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.33(C2xQ8) | 128,1424 |
C23.34(C2×Q8) = C24.408C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.34(C2xQ8) | 128,1436 |
C23.35(C2×Q8) = C23.620C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.35(C2xQ8) | 128,1452 |
C23.36(C2×Q8) = C24.421C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.36(C2xQ8) | 128,1461 |
C23.37(C2×Q8) = C23.632C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.37(C2xQ8) | 128,1464 |
C23.38(C2×Q8) = C24.428C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.38(C2xQ8) | 128,1474 |
C23.39(C2×Q8) = C24.434C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.39(C2xQ8) | 128,1480 |
C23.40(C2×Q8) = C23.663C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.40(C2xQ8) | 128,1495 |
C23.41(C2×Q8) = C23.668C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.41(C2xQ8) | 128,1500 |
C23.42(C2×Q8) = C24.448C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.42(C2xQ8) | 128,1512 |
C23.43(C2×Q8) = C24.450C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.43(C2xQ8) | 128,1516 |
C23.44(C2×Q8) = C23.688C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.44(C2xQ8) | 128,1520 |
C23.45(C2×Q8) = C24.454C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.45(C2xQ8) | 128,1522 |
C23.46(C2×Q8) = C24.456C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.46(C2xQ8) | 128,1536 |
C23.47(C2×Q8) = C23.707C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.47(C2xQ8) | 128,1539 |
C23.48(C2×Q8) = M4(2).29C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C23 | 32 | 4 | C2^3.48(C2xQ8) | 128,1648 |
C23.49(C2×Q8) = C2×C4.10C42 | φ: C2×Q8/C22 → C22 ⊆ Aut C23 | 32 | | C2^3.49(C2xQ8) | 128,463 |
C23.50(C2×Q8) = C2×C23.9D4 | φ: C2×Q8/C22 → C22 ⊆ Aut C23 | 32 | | C2^3.50(C2xQ8) | 128,471 |
C23.51(C2×Q8) = C24.162C23 | φ: C2×Q8/C22 → C22 ⊆ Aut C23 | 32 | | C2^3.51(C2xQ8) | 128,472 |
C23.52(C2×Q8) = C24⋊2Q8 | φ: C2×Q8/C22 → C22 ⊆ Aut C23 | 16 | | C2^3.52(C2xQ8) | 128,761 |
C23.53(C2×Q8) = C24.180C23 | φ: C2×Q8/C22 → C22 ⊆ Aut C23 | 32 | | C2^3.53(C2xQ8) | 128,762 |
C23.54(C2×Q8) = C24⋊Q8 | φ: C2×Q8/C22 → C22 ⊆ Aut C23 | 16 | 8+ | C2^3.54(C2xQ8) | 128,764 |
C23.55(C2×Q8) = C24.Q8 | φ: C2×Q8/C22 → C22 ⊆ Aut C23 | 16 | 8+ | C2^3.55(C2xQ8) | 128,801 |
C23.56(C2×Q8) = M4(2).15D4 | φ: C2×Q8/C22 → C22 ⊆ Aut C23 | 32 | 8- | C2^3.56(C2xQ8) | 128,802 |
C23.57(C2×Q8) = C24.11Q8 | φ: C2×Q8/C22 → C22 ⊆ Aut C23 | 16 | 4 | C2^3.57(C2xQ8) | 128,823 |
C23.58(C2×Q8) = C2×C23.Q8 | φ: C2×Q8/C22 → C22 ⊆ Aut C23 | 64 | | C2^3.58(C2xQ8) | 128,1121 |
C23.59(C2×Q8) = C2×C23.4Q8 | φ: C2×Q8/C22 → C22 ⊆ Aut C23 | 64 | | C2^3.59(C2xQ8) | 128,1125 |
C23.60(C2×Q8) = C42.162D4 | φ: C2×Q8/C22 → C22 ⊆ Aut C23 | 64 | | C2^3.60(C2xQ8) | 128,1128 |
C23.61(C2×Q8) = C24⋊4Q8 | φ: C2×Q8/C22 → C22 ⊆ Aut C23 | 32 | | C2^3.61(C2xQ8) | 128,1169 |
C23.62(C2×Q8) = C24.267C23 | φ: C2×Q8/C22 → C22 ⊆ Aut C23 | 64 | | C2^3.62(C2xQ8) | 128,1171 |
C23.63(C2×Q8) = C24.268C23 | φ: C2×Q8/C22 → C22 ⊆ Aut C23 | 64 | | C2^3.63(C2xQ8) | 128,1173 |
C23.64(C2×Q8) = C24.355C23 | φ: C2×Q8/C22 → C22 ⊆ Aut C23 | 64 | | C2^3.64(C2xQ8) | 128,1339 |
C23.65(C2×Q8) = C23.508C24 | φ: C2×Q8/C22 → C22 ⊆ Aut C23 | 64 | | C2^3.65(C2xQ8) | 128,1340 |
C23.66(C2×Q8) = C24⋊5Q8 | φ: C2×Q8/C22 → C22 ⊆ Aut C23 | 32 | | C2^3.66(C2xQ8) | 128,1358 |
C23.67(C2×Q8) = C42.187D4 | φ: C2×Q8/C22 → C22 ⊆ Aut C23 | 64 | | C2^3.67(C2xQ8) | 128,1360 |
C23.68(C2×Q8) = C42.188D4 | φ: C2×Q8/C22 → C22 ⊆ Aut C23 | 64 | | C2^3.68(C2xQ8) | 128,1361 |
C23.69(C2×Q8) = C24.379C23 | φ: C2×Q8/C22 → C22 ⊆ Aut C23 | 64 | | C2^3.69(C2xQ8) | 128,1397 |
C23.70(C2×Q8) = C23.567C24 | φ: C2×Q8/C22 → C22 ⊆ Aut C23 | 64 | | C2^3.70(C2xQ8) | 128,1399 |
C23.71(C2×Q8) = C24⋊6Q8 | φ: C2×Q8/C22 → C22 ⊆ Aut C23 | 32 | | C2^3.71(C2xQ8) | 128,1572 |
C23.72(C2×Q8) = C23.741C24 | φ: C2×Q8/C22 → C22 ⊆ Aut C23 | 64 | | C2^3.72(C2xQ8) | 128,1573 |
C23.73(C2×Q8) = C24.15Q8 | φ: C2×Q8/C22 → C22 ⊆ Aut C23 | 32 | | C2^3.73(C2xQ8) | 128,1574 |
C23.74(C2×Q8) = C22.47C25 | φ: C2×Q8/C22 → C22 ⊆ Aut C23 | 32 | | C2^3.74(C2xQ8) | 128,2190 |
C23.75(C2×Q8) = C2×C4.C42 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C23 | 64 | | C2^3.75(C2xQ8) | 128,469 |
C23.76(C2×Q8) = C24.7Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C23 | 32 | | C2^3.76(C2xQ8) | 128,470 |
C23.77(C2×Q8) = C4×C8.C4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C23 | 64 | | C2^3.77(C2xQ8) | 128,509 |
C23.78(C2×Q8) = C8.6C42 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C23 | 64 | | C2^3.78(C2xQ8) | 128,510 |
C23.79(C2×Q8) = C24.19Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C23 | 32 | | C2^3.79(C2xQ8) | 128,542 |
C23.80(C2×Q8) = C24.9Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C23 | 32 | | C2^3.80(C2xQ8) | 128,543 |
C23.81(C2×Q8) = C42.322D4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C23 | 64 | | C2^3.81(C2xQ8) | 128,569 |
C23.82(C2×Q8) = C42.104D4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C23 | 64 | | C2^3.82(C2xQ8) | 128,570 |
C23.83(C2×Q8) = C42.324D4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C23 | 64 | | C2^3.83(C2xQ8) | 128,580 |
C23.84(C2×Q8) = C42.106D4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C23 | 64 | | C2^3.84(C2xQ8) | 128,581 |
C23.85(C2×Q8) = C24.10Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C23 | 32 | | C2^3.85(C2xQ8) | 128,587 |
C23.86(C2×Q8) = C42.430D4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C23 | 64 | | C2^3.86(C2xQ8) | 128,682 |
C23.87(C2×Q8) = C23.167C24 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C23 | 64 | | C2^3.87(C2xQ8) | 128,1017 |
C23.88(C2×Q8) = C2×C23.8Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C23 | 64 | | C2^3.88(C2xQ8) | 128,1018 |
C23.89(C2×Q8) = C23.178C24 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C23 | 64 | | C2^3.89(C2xQ8) | 128,1028 |
C23.90(C2×Q8) = C4×C22⋊Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C23 | 64 | | C2^3.90(C2xQ8) | 128,1034 |
C23.91(C2×Q8) = C24.91D4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C23 | 32 | | C2^3.91(C2xQ8) | 128,1047 |
C23.92(C2×Q8) = C24.545C23 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C23 | 64 | | C2^3.92(C2xQ8) | 128,1048 |
C23.93(C2×Q8) = C23.199C24 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C23 | 64 | | C2^3.93(C2xQ8) | 128,1049 |
C23.94(C2×Q8) = C23.211C24 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C23 | 64 | | C2^3.94(C2xQ8) | 128,1061 |
C23.95(C2×Q8) = C24.567C23 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C23 | 64 | | C2^3.95(C2xQ8) | 128,1170 |
C23.96(C2×Q8) = C24.568C23 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C23 | 64 | | C2^3.96(C2xQ8) | 128,1172 |
C23.97(C2×Q8) = C24.569C23 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C23 | 64 | | C2^3.97(C2xQ8) | 128,1174 |
C23.98(C2×Q8) = C23.449C24 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C23 | 64 | | C2^3.98(C2xQ8) | 128,1281 |
C23.99(C2×Q8) = C24.584C23 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C23 | 64 | | C2^3.99(C2xQ8) | 128,1301 |
C23.100(C2×Q8) = C23.527C24 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C23 | 64 | | C2^3.100(C2xQ8) | 128,1359 |
C23.101(C2×Q8) = C23.546C24 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C23 | 64 | | C2^3.101(C2xQ8) | 128,1378 |
C23.102(C2×Q8) = C23.559C24 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C23 | 64 | | C2^3.102(C2xQ8) | 128,1391 |
C23.103(C2×Q8) = C24⋊8Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C23 | 32 | | C2^3.103(C2xQ8) | 128,1580 |
C23.104(C2×Q8) = C42.439D4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C23 | 64 | | C2^3.104(C2xQ8) | 128,1583 |
C23.105(C2×Q8) = C24.599C23 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C23 | 64 | | C2^3.105(C2xQ8) | 128,1587 |
C23.106(C2×Q8) = C42.440D4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C23 | 64 | | C2^3.106(C2xQ8) | 128,1589 |
C23.107(C2×Q8) = C22×C8.C4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C23 | 64 | | C2^3.107(C2xQ8) | 128,1646 |
C23.108(C2×Q8) = C2×M4(2).C4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C23 | 32 | | C2^3.108(C2xQ8) | 128,1647 |
C23.109(C2×Q8) = C2×C23.37C23 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C23 | 64 | | C2^3.109(C2xQ8) | 128,2175 |
C23.110(C2×Q8) = C2×C23.41C23 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C23 | 64 | | C2^3.110(C2xQ8) | 128,2189 |
C23.111(C2×Q8) = Q8×C22⋊C4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C23 | 64 | | C2^3.111(C2xQ8) | 128,1072 |
C23.112(C2×Q8) = C23.227C24 | φ: C2×Q8/Q8 → C2 ⊆ Aut C23 | 64 | | C2^3.112(C2xQ8) | 128,1077 |
C23.113(C2×Q8) = D4×C4⋊C4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C23 | 64 | | C2^3.113(C2xQ8) | 128,1080 |
C23.114(C2×Q8) = C23.231C24 | φ: C2×Q8/Q8 → C2 ⊆ Aut C23 | 64 | | C2^3.114(C2xQ8) | 128,1081 |
C23.115(C2×Q8) = C24.558C23 | φ: C2×Q8/Q8 → C2 ⊆ Aut C23 | 64 | | C2^3.115(C2xQ8) | 128,1092 |
C23.116(C2×Q8) = C23.250C24 | φ: C2×Q8/Q8 → C2 ⊆ Aut C23 | 64 | | C2^3.116(C2xQ8) | 128,1100 |
C23.117(C2×Q8) = C23.334C24 | φ: C2×Q8/Q8 → C2 ⊆ Aut C23 | 64 | | C2^3.117(C2xQ8) | 128,1166 |
C23.118(C2×Q8) = C23.349C24 | φ: C2×Q8/Q8 → C2 ⊆ Aut C23 | 64 | | C2^3.118(C2xQ8) | 128,1181 |
C23.119(C2×Q8) = C24.572C23 | φ: C2×Q8/Q8 → C2 ⊆ Aut C23 | 64 | | C2^3.119(C2xQ8) | 128,1205 |
C23.120(C2×Q8) = C23.402C24 | φ: C2×Q8/Q8 → C2 ⊆ Aut C23 | 64 | | C2^3.120(C2xQ8) | 128,1234 |
C23.121(C2×Q8) = C23.405C24 | φ: C2×Q8/Q8 → C2 ⊆ Aut C23 | 64 | | C2^3.121(C2xQ8) | 128,1237 |
C23.122(C2×Q8) = C23.483C24 | φ: C2×Q8/Q8 → C2 ⊆ Aut C23 | 64 | | C2^3.122(C2xQ8) | 128,1315 |
C23.123(C2×Q8) = C2×D4⋊3Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C23 | 64 | | C2^3.123(C2xQ8) | 128,2204 |
C23.124(C2×Q8) = C4×C2.C42 | central extension (φ=1) | 128 | | C2^3.124(C2xQ8) | 128,164 |
C23.125(C2×Q8) = C24.17Q8 | central extension (φ=1) | 64 | | C2^3.125(C2xQ8) | 128,165 |
C23.126(C2×Q8) = C24.624C23 | central extension (φ=1) | 128 | | C2^3.126(C2xQ8) | 128,166 |
C23.127(C2×Q8) = C24.625C23 | central extension (φ=1) | 128 | | C2^3.127(C2xQ8) | 128,167 |
C23.128(C2×Q8) = C24.626C23 | central extension (φ=1) | 128 | | C2^3.128(C2xQ8) | 128,168 |
C23.129(C2×Q8) = C24.5Q8 | central extension (φ=1) | 64 | | C2^3.129(C2xQ8) | 128,171 |
C23.130(C2×Q8) = C24.631C23 | central extension (φ=1) | 128 | | C2^3.130(C2xQ8) | 128,173 |
C23.131(C2×Q8) = C24.632C23 | central extension (φ=1) | 128 | | C2^3.131(C2xQ8) | 128,174 |
C23.132(C2×Q8) = C24.633C23 | central extension (φ=1) | 128 | | C2^3.132(C2xQ8) | 128,175 |
C23.133(C2×Q8) = C24.634C23 | central extension (φ=1) | 128 | | C2^3.133(C2xQ8) | 128,176 |
C23.134(C2×Q8) = C24.635C23 | central extension (φ=1) | 128 | | C2^3.134(C2xQ8) | 128,177 |
C23.135(C2×Q8) = C24.636C23 | central extension (φ=1) | 128 | | C2^3.135(C2xQ8) | 128,178 |
C23.136(C2×Q8) = C22×C2.C42 | central extension (φ=1) | 128 | | C2^3.136(C2xQ8) | 128,998 |
C23.137(C2×Q8) = C2×C4×C4⋊C4 | central extension (φ=1) | 128 | | C2^3.137(C2xQ8) | 128,1001 |
C23.138(C2×Q8) = C2×C23.7Q8 | central extension (φ=1) | 64 | | C2^3.138(C2xQ8) | 128,1010 |
C23.139(C2×Q8) = C2×C42⋊8C4 | central extension (φ=1) | 128 | | C2^3.139(C2xQ8) | 128,1013 |
C23.140(C2×Q8) = C2×C42⋊9C4 | central extension (φ=1) | 128 | | C2^3.140(C2xQ8) | 128,1016 |
C23.141(C2×Q8) = C2×C23.63C23 | central extension (φ=1) | 128 | | C2^3.141(C2xQ8) | 128,1020 |
C23.142(C2×Q8) = C2×C23.65C23 | central extension (φ=1) | 128 | | C2^3.142(C2xQ8) | 128,1023 |
C23.143(C2×Q8) = C2×C23.67C23 | central extension (φ=1) | 128 | | C2^3.143(C2xQ8) | 128,1026 |
C23.144(C2×Q8) = C2×C23.78C23 | central extension (φ=1) | 128 | | C2^3.144(C2xQ8) | 128,1119 |
C23.145(C2×Q8) = C2×C23.81C23 | central extension (φ=1) | 128 | | C2^3.145(C2xQ8) | 128,1123 |
C23.146(C2×Q8) = C2×C23.83C23 | central extension (φ=1) | 128 | | C2^3.146(C2xQ8) | 128,1126 |
C23.147(C2×Q8) = C23×C4⋊C4 | central extension (φ=1) | 128 | | C2^3.147(C2xQ8) | 128,2152 |
C23.148(C2×Q8) = Q8×C22×C4 | central extension (φ=1) | 128 | | C2^3.148(C2xQ8) | 128,2155 |
C23.149(C2×Q8) = C22×C42.C2 | central extension (φ=1) | 128 | | C2^3.149(C2xQ8) | 128,2169 |
C23.150(C2×Q8) = C22×C4⋊Q8 | central extension (φ=1) | 128 | | C2^3.150(C2xQ8) | 128,2173 |